Deep Reinforcement Learning for Dynamic Reliability Aware NFV-Based Service Provisioning

Hamed Rahmani Khezri, Puria Azadi Moghadam, Mohammad Karimzadeh-Farshbafan, Vahid Shah-Mansouri, Hamed Kebriaei, and Dusit Niyato

School of Electrical and Computer Engineering The University of Tehran, Tehran

December 12, 2019

OUTLINE

- Introduction
- Related works and Motivations
- System Model
- Deep Reinforcement Learning (Deep-RL) Model
- Numerical Results
- Conclusion

Introduction

ヘロト ヘアト ヘビト ヘビト

INTRODUCTION

- Service deployment in traditional enterprise networks tightly depends on:
 - Specific hardware named middlebox
- Examples of such middleboxes are:
 - Quality of service (QoS) monitoring tools
 - Intrusion detection systems
 - Deep packet inspection

WHAT IS NETWORK FUNCTION VIRTUALIZATION

- Hardware implementation of network functions:
 - Limits the expansion of the networks.
 - Increases CAPEX and OPEX.
- Network Function Virtualization (NFV) is promising to obviate these limitations.
- In NFV-based networks:
 - The hardware middleboxes replaced by the modules of software named virtual network functions (VNFs).
 - These software programs are running on commodity servers.

SERVICE DEFINITION IN NETWORK FUNCTION VIRTUALIZATION

- To provide a service in NFV-based networks:
 - A set of appropriate VNFs should be sequenced.
 - This chain of VNF called service function chain (SFC).
- Service placement or NFV placement is:
 - The procedure of assigning resources of the network infrastructure to the VNFs of service.
- Service placement is the most challenging task in NFV-based networks.

Related works and Motivations

イロン イロン イヨン イヨン

RELATED WORK

The game theoretical model for service placement: A dynamic market mechanism design for on-demand SFC provisioning and pricing in the NFV market.

- [1] S. Gu and et. al., "An efficient auction mechanism for service chains in the NFV market," in Proc. of *IEEE INFOCOM*, San Fransisco, CA, May. 2016.
- [2] X. Zhang and et. al., "Online stochastic buy-sell mechanism for VNF chains in the NFV market," *IEEE Journal on Selected Areas in Communications*, vol. 35, no. 2, pp. 392â406, 2017.

Machine Learning approaches have been used recently in NFV: An efficient online algorithm for dynamic service placement.

- [3] Y. Jia and et. al., "Online scaling of NFV service chains across geo-distributed datacenters," *IEEE/ACM Trans. on Networking (TON)*, vol. 26, no. 2, pp. 699â710, 2018.
- [4] V. Sciancalepore and et. al., "z-TORCH: An automated NFV orchestration and monitoring solution," *IEEE Trans. on Network and Service Management*, vol. 15, no. 4, pp. 1292-1306, 2018.

MOTIVATIONS

- Service placement considering the requested service level agreement (SLA) of the service is a major challenge in network slicing.
 - Reliability requirement and end to end delay are examples of such SLAs.
- Due to software implementation of network functions in NFV, reliability has become more important.
- Due to dynamicity of the services, dynamic service placement should be considered.
- Dynamic reliability aware service placement is missing in NFV literature.
- We introduce a novel model based on Deep reinforcement learning (Deep-RL) for dynamic reliability aware service placement.

System Model

ヘロト ヘロト ヘヨト ヘヨト

NETWORK INFRASTRUCTURE

- There are three main components for the NFV based network:
 - Services requested by the users and has a specific reliability requirement.
 - Infrastructure network provider (InP) is the owner of the commodity servers and the networking infrastructure between them.
 - Network operator (NO) is responsible for responding incoming service using the InP's resources.
- There are multiple InPs where each one provide number of servers for NO.
 - The main characteristic of each InP is the failure probability of its servers.
 - The unit cost of using servers of each InP is dependent on the failure probability of its servers.
- $S = \{S_i^m\}$ is the set of servers $(S_i^m \text{ is the } m^{\text{th}} \text{ server in } i^{\text{th}})$.
- $L = \{L_{ij}^{mh}\}$ is the set of links between the servers.

TIME EVOLUTION AND SERVICE CHARACTERISTICS

- We divide the time into equal length slots:
 - Service placement is performed at the beginning of each slot for incoming services during previous slot.
 - ► It is possible that some of incoming services is not admitted due to resource scarcity.
 - Each admitted service lasts for a random number of slots
- There are L service types:
 - K_l it the number of incoming services of l^{th} type in each slot.
 - U_l is the number of VNFs in l^{th} type's SFC.
 - r_l^u is the required resource of u^{th} VNF of l^{th} type's.
 - d_l is the departure probability of l^{th} type.
 - F_l is the maximum tolerable failure probability of l^{th} type.
 - ▶ The decision variable of placing the u^{th} VNF of the $(k_l)^{\text{th}}$ service of l^{th} type in the m^{th} server of the i^{th} InP in the n^{th} slot is $x_{n,i,k_l}^{m,u} \in \{0,1\}$.

SERVICE PLACEMENT POLICY

- The NO aims to maximize the number of admitted service while minimizing the placement cost.
- The two main components of the placement cost are:
 - Server cost in each slot indicated by ξ_n^s .
 - Link cost in each slot indicated by ξ_n^l .
- There are some constraints for performing service placement in each slot:
 - The reliability of each service which is a function of $x_{n,i,k}^{m,u}$.
 - The resource capacity of each server.
 - The bandwidth limitation of each link.
- The initial optimization problem is intractable due to dynamic nature of the variables.

(日)

Deep Reinforcement Learning (Deep-RL) Model

・ロト ・ 日 ・ ・ 日 ・ ・ 日

DEEP-RL MODEL

- Due to the dynamic nature of service placement problem, learning based techniques can be helpful.
- The goal of the learning technique is:
 - learning a policy determines what action to take in each state.
- In service placement problem, the learning agent should learn how many and what service types can admitted in each slot in order to
 - Maximize the number of admitted services.
 - Minimize the placement cost.

LEARNING NECESSITY FOR SERVICE PLACEMENT

- In reinforcement learning (RL), there are one or more agents who explore and exploit the environment based on:
 - The reward gained directly from an environment.
 - The state which completely encapsulate all features and conditions.
- A particular policy is used to make a balance between the exploration and the exploitation.
- In large environments where states are covering a wide range of possibilities, RL has some weaknesses.

DEEP-RL MODEL FOR SERVICE PLACEMENT

- A four-tuple $(\Omega_S, \Omega_A, \Omega_R, \Omega_M)$ should determined where:
 - Ω_S is the state set.
 - Ω_A is the action set.
 - Ω_R is the reward set.
 - Ω_M is the memory set.
- The state in service placement problem is defined as:
 - Available resources provided by InPs.
 - Resources demanded by a service.
 - Requested reliability of each service.
- We define the action as the possible placement policies for each incoming service.

A D K A D K A D K A D K

DEEP-RL MODEL FOR SERVICE PLACEMENT

- The reward of Deep-RL agent for service placement defined based on:
 - A penalty for a situation in which the reliability requirement is not satisfied.
 - A reward for the successful placement of a service.
 - A penalty for situations in which resource allocation is failed due to the lack of enough resource in the selected server.
 - Placement cost of each service.
- The memory set of Deep-RL agent is defined based on:
 - Current state.
 - Taken action.
 - Gained reward.
 - Next state.

AN OVERVIEW OF DEEP-RL

イロン イボン イヨン イヨン

Numerical Results

ヘロト ヘロト ヘヨト ヘヨト

SIMULATION SETUP

- We use Keras and TensorFlow in Python for simulation.
- We consider five InPs with different reliabilities {96, 97, 98, 99, 99.9}.
- Each InP has five servers with the same reliability level
- Each server has capacity of 100 units of one resource type.
- The reliability of the services is among $\{91, 92, 93, 94, 95\}$.
- The number of VNFs in each service type is between three to five VNFs.
- The resource demand of the VNFs is considered to be between 10 and 20 units.
- The departure probability for all service types is equal and between 0.5 to 0.8

SIMULATION SETUP

- We use a fully connected Deep neural network (DNN) includes:
 - ► Hyperbolic tangent and ReLu as the activation function in the middle layer.
 - The output layer is connected to a linear activation function.
- Each layer is associated with Dropout, with its parameter set between 0.05 and 0.2, to avoid overfitting.
- The mean square error metric for the error function.

ADMISSION RATIO FOR DIFFERENT SERVICE TYPE THROUGH THE LEARNING.

Admission ratio for different service types under various departure probability

Conclusions

ヘロト ヘロト ヘヨト ヘヨト

CONCLUSIONS

- NFV is a promising paradigm shift for next generation of telecommunication network.
- Service placement is referred to allocation of InP's resources to incoming services.
- Service placement considering the dynamicity of services and their SLA is a major challenge in NFV-based network.
- We introduced a Deep-RL model for dynamic reliability-aware service placement for:
 - Maximizing the number of admitted services.
 - Minimizing the placement cost.

Thank You!

・ロト ・四ト ・ヨト ・ヨト